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Note 

The Calculation of Eigenvalues for the Stationary 
Perturbation of Symmetrical Pipe Poiseuille Flow 

1. INTRODUCTION 

The eigenvalues for the stationary perturbation for plane Poiseuille flow have 
been presented in [l-3]. In particular [ 1 ] shows that these eigenvalues can be used 
in an upstream boundary condition for the two-dimensional viscous flow in a step- 
ped channel. This paper obtains similar eigenvalues for axisymmetric perturbations 
of pipe Poiseuille flow. It is hoped that these eigenvalues will be used in the boun- 
dary conditions for pipe flow at some future date. The perturbations are substituted 
into the Navier-Stokes equations and a linear approximation taken. This yields a 
set of differential eigenvalue equations for the decay of a stationary perturbation 
very similar to those in [3] but having coefftcients l/r and l/r*, where r is the non- 
dimensional distance from the centre of the pipe. The differential equations can 
either be solved in this form or they can be multiplied by r or r*. Both formulations 
are used but, as pointed out by [4], care has to be taken with the boundary con- 
ditions if the equations contain l/r and l/r* to make sure all the terms in the 
equations are finite at the origin. 

The dependent variables of the ordinary differential equations are expressed as an 
expansion of Chebyshev polynomials. Two methods are used: a method using the 
orthogonality properties of the Chebyshev polynomials and a collocation method. 
The orthogonal method is analogous to that used by Orszag [S] in his treatment of 
the Orr-Sommerfeld stability equations and the collocation method similar to that 
described by Picken [6]. Both methods convert the differential eigenvalue problem 
into a generalized algebraic eigenvalue problem which is solved by using the QZ 
matrix algorithm. 

Both formulations of the equations are solved using the orthogonal and 
collocation methods. The collocation method has the advantage that it is more 
straightforward to programme and that it seems to give fewer spurious eigenvalues. 
The eigenvalues calculated will not only be of use in the numerical solution of 
steady pipe flow but also give an understanding on the rate of decay of disturbances 
in pipes. 
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2. EQUATIONS 

For symmetrical pipe flow the nondimensional equations of motion are 

!2+~+!+, (2.1 

(2.2 1 

(2.3) 

where 

and v,, vz, q are respectively the velocity components in the radial direction and in 
the direction of flow and the vorticity. Cylindrical polar co-ordinates are used. The 
Reynolds number is given by R = 2aU/o, where a is the radius of the pipe, U is the 
average velocity, and u is the kinematic viscosity of the fluid. Equations (2.1)-(2.3) 
are satisfied by the pipe Poiseuille flow solution of the form 

0, = 0, v;=(l-?), and v] = 2r. (2.4) 

Following [l] we look for a perturbation solution like 

v, = &V,(r) e-I=, v= 1 -rz+.5Vz(r)e-*‘, q = 2r + &Z(r) ema’, (2.5) 

where E is small. Substituting (2.5) into Eqs. (2.1)-(2.3) and neglecting squares of E 
leads to 

DVr+i If-,-ccv,=o, 

Dvz+ccvr+z=o, 

D2Z+DZ+a2Z-fZ+ R(1 -r2)ctZ=0, 
r 

(2.6) 

(2.7) 

(2.8) 

where the operator D denotes differentiation with respect to r. The boundary con- 
ditions are 

V,(O)=Z(O)= V,(l)= V,(l)=O, (2.9) 

with the added condition that V=(O) must be finite. We will refer to Eqs. (2.6k(2.8) 
as the velocity/vorticity formulation of the differential eigenvalue problem. 
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From [7] it is possible to deduce an alternative formulation of the problem with 
VJz), V=(z), and P(z) as the eigenfunctions. The equations are 

c ) D+’ V,-aV,=O, 
r 

D2+~-~+u2+Ra(l -r2) V,-RDP=O, 
r 1 

(2.10) 

(2.11) 

D2+“+cr2+Rct(l-r’) Vz+2rRV,+RclP=0, 
r 1 (2.12) 

where P(z) is the eigenfunction associated with pressure. The boundary conditions 
are 

V,(O) is finite, P(0) is finite, V,(O) = 0, (2.13) 

and 

V,(l)= V,(l)=O. (2.14) 

We will refer to Eqs. (2.10))(2.12) as the velocity/pressure formulation of the dif- 
ferential eigenvalue problem. 

3. NUMERICAL SOLUTION 

Both sets of eqautions are solved in the forms given in the previous section using 
Chebyshev polynomials in a method first described by [5], but also described in 
[l] in a similar problem to the one under consideration. Let the Chebyshev expan- 
sion of qS(r) and its derivatives d4$/dry be 

(3.1) 

where b(r) is any of the eigenfunctions V,(r), V=(r), Z(r), or P(r) and T, is the nth- 
degree Chebyshev polynomial of the first kind defined by T,(cos 0) =cos n0, for 
n = 0, 1, 2 ,... . The Chebyshev polynomials are defined over the range - 1 < r < 1 but 
the problem only uses the range 0 < r < 1. The Chebyshev expansion method has 
been used in [ 1, 51 so little reference will be made to the details of the method. The 
Chebyshev expansions of the derivative and other terms listed in [l, 51 together 
with extra results from [4, S] are used to convert the differential eigenvalue 
problem into a generalised algebraic eigenvalue problem. We use a Chebyshev 
series of order M. 

Let us now look at the velocity/vorticity formulation in particular. 
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Equations (2.6)-(2.8) are very similar to the velocity/vorticity equations of plane 
Poiseuille flow of [3] and are solved in a similar manner. It will be noted that 
Eq. (2.8) seems to uncouple from (2.6) and (2.7) but it is in fact coupled through 
the boundary conditions. There is only one boundary condition for 2 and as (2.8) 
is a second-order differential equation a unique solution is not possible. Reference 
[4] mentions the need to impose extra “pole conditions” at r = 0 due to the terms 
containing l/r and l/r2. In the velocity/vorticity formulation these extra conditions 
are not required as 

and with Z(0) =0 and appropriate differentiability conditions at r =0 it follows 
that this term remains finite as r -+ 0. Equations (2.6)(2.8) together with the boun- 
dary conditions (2.9) can be expressed in the form 

(A-ciB)b=O (3.2) 

where A and B are square matrices of dimension 4M + 4 and the vector b contains 
the Chebyshev coefficients of U, V, Z, and aZ. The method used to solve (3.2) is 
described by [9] and is a generalisation of the standard QZ algorithm. 

Let us now look at the velocity/pressure formulation. In order to reduce the 
number of eigenfunctions and thus the size of the matrices in the generalised eigen- 
value we substitute for a V; in Eq. (2.12) using Eq. (2.10). As suggested by [4] we 
must apply the extra boundary condition or “pole condition,” DV,(O) = 0. This is 
required to make the term (l/r) D V, finite at r = 0. Equations (2.10) (2.11), and a 
modified (2.12) are now solved using the Chebyshev method as in the velocity/vor- 
ticity formulation. 

The detailed results obtained using the formulations described in this section are 
not given in detail as the method described in the next section gives similar results 
with less computer time. It should be noted that the velocity/pressure formulation 
of the equations gives extra eigenvalues just as described in [3] for the same for- 
mulation of plane Poiseuille flow. With only using half the range of the Chebyshev 
series there are many spurious eigenvalues and the calculations need to be perfor- 
med for several M so that the correct eigenvalues can be detected. 

4. NUMERICAL SOLUTION OF THE TRANSFORMED EQUATIONS 

Gottlieb and Orszag [4] suggest that when using a Chebyshev series to solve 
ordinary differential equations with coefficients like l/r and l/r* it might be better 
to multiply the equations by r or r2 and avoid having to introduce an extra boun- 
dary condition at r = 0. We also transform the range 0 < r < 1 into - 1 <x < 1, 
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using a linear transformation. The complete range of the Chebyshev series will now 
be used. Equations (2.6)-(2.8) of the velocity/vorticity fomulation transform into 

(x+ 1) v:+ V+ av,=o, (4.1) 

2v;+z+clv,=o, (4.2) 

(x2+2x+l)Z”+(l+x)Z’-Z-$(x4+4x3+2x2-4x-3)zZ 

f ~(x’+2x+*)a’Z=O; (4.3) 

where the prime denotes differentiation with respect to x. The boundary conditions 
are 

V,(l)= V,(l)=O. (4.4) 

Having multiplied the equations by r or r2 we do not need to introduce a “pole 
condition.” In addition the boundary conditions V,( - 1) = 0 and Z( - 1) = 0 are 
satisfied by the equations themselves. The Chebyshev series method is now applied. 

Equations (2.10)-(2.12) describing the problem in the velocity/pressure form are 
now transformed in a similar manner, and we obtain 

(x+ 1) q+ v+ av,=o, (4.5) 

(x2+2x+1) l’:‘+(x+l) Y;-V,~(x4+4x3+2x2-4x-3) I’, 

+ ~(x2+2x+l)~W,-~(x7+2x+1)P~=o, (4.6) 

2(x+1) V:+2V:.+;(5+2x+xz) V,+;(3+x-3xz-x3) v; 

+ (x+ l)aV:+aV,+RctR=O. (4.7) 

The boundary conditions are given in (4.4) and again no extra “pole conditions” 
are required. Equations (4.5)-(4.7) are solved using Chebyshev series method. 

5. COLLOCATION METHOD 

Both formulations of the problem are now solved using Chebyshev polynomials 
in a collocation method similar to that in [6]. As before the functions are expressed 
in the form of finite Chebyshev series: 
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k=O 

N-l N-2 

d’(x) = 1 d’)Tk(X), (f’(x)= c ajp,(x). (5.1) 
k=O k=O 

There are four eigenfunctions in each formulation so we need to obtain 4N + 4 
equations. The transformed equations of Section 4 will be used. We select the N - 1 
collocation points xi = cos(in/N), i = 1, 2,..., N - 1. The boundary conditions are 
either 

V,(l)= V,(l)=0 and Z(-l)=aZ(-1)= V,(-l)=O (5.2) 

in the case of the velocity/vorticity formulation, or 

V,(l)=aV,(l)= V,(l)=0 and V,(-l)=aV,(-l)=O (5.3) 

in the case of the velocity/pressure formulation. In either formulation three more 
equations are required and so we apply either Eqs. (4.1)-(4.2) or Eqs. (4.5)-(4.6) at 
x = 1. There are now 4N + 4 equations with 4N + 4 unknowns. 

We form a (N - 1) x (N + 1) matrix of the values of the Chebyshev polynomials 
at the collocation points. Reference [6] solves the problem by expressing the a, and 
u!l), i= 1,2, 3, et c., in terms of uj*) but we will follow (5) and express the ai*) and 
ai’) in terms of ui and then solve for the ai. 

The method proceeds as in the orthogonal method and we solve as in Section 3 
an algebraic eigenvalue problem similar to Eq. (3.2). The amount of computer time 
taken using this method is much the same as the orthogonal method. The 
numerical results are in agreement with those of Sections 3 and 4 but the main 
advantage with this method is the easier programming. 

6. RESULTS 

The results are presented in Tables I-III. Tables I and II give the real eigenvalues 
of smallest modulus. There are real eigenvalues for Reynolds number R = 10.0 but 
no eigenvalues for R < 5.0. It should be noticed that the negative real eigenvalues 
tend to a constant as R becomes large while the positive real eigenvalues behave 
like l/R as R becomes large. This behaviour is very much like the results for plane 
Poiseuille flow in [ 11. The graphs of Reynolds number against the real eigenvalues 
are very similar to the equivalent graphs in [ 1 ] and for the sake of brevity are not 
given in this paper. The complex eigenvalues whose real parts have the smallest 
modulus are given in Table III. The complex eigenvalues with negative real parts 
are not presented for Reynolds number R > 100 because due to the large negative 
real part they are less accurate. Reference Cl] explains that eigenvalues with 
positive real parts are associated with downstream disturbances while eigenvalues 
with negative real parts are associated with upstream disturbances. Then for 
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TABLE I 

Real Positive Eigenvalues 

Reynolds 
number R Eigenvalue a 

10 2.84882 4.10718 5.28426 
25 1.23820 5.90935 
50 0.63541 1.86985 5.49656 

100 0.320002 0.950323 1.89301 
250 0.128266 0.382302 0.763792 
500 0.0641523 0.191314 0.382500 

1000 0.0320785 0.0956774 0.191328 
2000 0.0160396 0.0478413 0.0956735 

Reynolds numbers greater than 10 both the upstream and downstream pertur- 
bations from pipe Poiseuille flow are dominated by the real eigenvalue of smallest 
modulus. It will be noticed that in Table III for Reynolds number R = 10 the com- 
plex eigenvalue with positive real part seems out of line with the other entries. This 
type of behaviour is explained in [2]. At R = 10 the complex eigenvalue with real 
part near 3.7 becomes two real eigenvalues. The complex eigenvalue presented here 
is really the eigenvalue with next largest modulus. 

The orthogonal method of Orszag does throw up spurious eigenvalues on 
occasions and care has to be exercised, but the collocation method does not give 
these spurious eigenvalues. The boundary conditions are less of a problem when the 
equations are multiplied by r or r*. The computational time is very much the same 
for both the orthogonal method and the collocation method but the collocation 
method is far easier to programme. 

TABLE II 

Real Negative Eigenvalues 

Reynolds 
number R Eigenvalue a 

10 - 4.94606 
25 -4.49291 -8.13980 - 12.4276 
50 -4.31816 -7.77838 - 11.2475 

100 -4.19980 - 7.57708 - 10.9217 
250 -4.09219 -7.40731 - 10.6829 
500 -4.03427 -7.31888 - 10.5649 

1000 - 3.99010 - 7.25228 - 10.4778 
2000 - 3.95604 -7.20123 -10.4116 
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TABLE III 

Complex Eigenvalues 

Reynolds 

number R 

Complex eigenvalue a with 

Negative real part Positive real part 

0.25 -4.51264 + 1.47383 4.42107 f. 1.45948 
0.5 -4.56012 + 1.47848 4.37695 * 1.44994 
1.0 -4.65849 f 1.48232 4.29200 f 1.42646 
2.5 -4.98237 + 1.44170 4.06288 f 1.32452 
5.0 -5.64817 f 1.07722 3.76255 + 1.06197 

10 -8.31614 + 1.53700 7.85193 kO.681963 
25 - 18.6746 k 1.4003 3.7072 k 0.5094 
50 - 19.5699 k 3.3245 3.7920 + 0.4524 

100 4.17041 kO.272606 
250 3.8009 1 &- 0.0625023 
500 4.00175 +0.160450 

1000 3.87390 kO.16162 
2000 3.9263 + 8.52 x lo-* 
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